`D = (-infty; 4)`
`5/(2)log_{5} (x + 2)^{2} - 5 = log_{5} (4 - x)^{5} + 1/(2)log_{5} (x + 6)^{10}`
`-> 5/(2).2.log_{5} (x + 2) - 5log_{5} (4 - x) - 1/(2).10.log_{5} (x + 6) = 5`
`-> 5log_{5} (x + 2) - 5log_{5} (4 - x) - 5log_{5} (x + 6) = 5`
`-> log_{5} (x + 2) - log_{5} (4 - x) - log_{5} (x + 6) = 1`
`-> log_{5} ((x + 2)/((4 - x)(x + 6))) = 1`
`-> (x + 2)/((4 - x)(x + 6)) = 5`
`-> x + 2 = 5(4x + 24 - x^2 - 6x)`
`-> x + 2 = 20x + 120 - 5x^2 - 30x`
`-> 5x^2 + 11x - 118 = 0`
`->` \(\left[ \begin{array}{l}x = \dfrac{\sqrt{2481} - 11}{10}\\x = \dfrac{-\sqrt{2481} - 11}{10}\end{array} \right.\)
`-> S = {(-\sqrt{2481} - 11)/(10); (\sqrt{2481} - 11)/(10)}`