($\frac{2}{√3-1}$ +$\frac{3}{√3-2}$+ $\frac{15}{3-√3}$). $\frac{1}{√3+5}$
=[$\frac{2}{√3-1}$ +$\frac{3}{√3-2}$+ $\frac{15}{√3(√3-1)}$]. $\frac{1}{√3+5}$
=($\frac{2}{√3-1}$ +$\frac{3}{√3-2}$+ $\frac{5√3}{√3-1}$). $\frac{1}{√3+5}$
=$\frac{2(√3-2)+3(√2-1)+5√3(√3-2)}{(√3-1)(√3-2)}$
=$\frac{2√3-4+3√2-3+15-10√3}{(√3-1)(√3-2)}$
=$\frac{5√2-8√3}{5-3√3}$
=$\frac{5√2-8√3}{5-3√3}$ .$\frac{1}{√3+5}$
=$\frac{5√2-8√3}{(5-3√3)(√3+5)}$
=$\frac{5√2-8√3}{5√3+3}$