Đáp án:
f. \(Max = - 1999\)
Giải thích các bước giải:
\(\begin{array}{l}
c.C = - 4 + 4x - {x^2} - 9 - 6y - {y^2} + 16\\
= - {\left( {x - 2} \right)^2} - {\left( {y + 3} \right)^2} + 16\\
Do:{\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} \ge 0\forall x;y \in R\\
\to - {\left( {x - 2} \right)^2} - {\left( {y + 3} \right)^2} \le 0\\
\to - {\left( {x - 2} \right)^2} - {\left( {y + 3} \right)^2} + 16 \le 16\\
\to Max = 16\\
\Leftrightarrow \left\{ \begin{array}{l}
x - 2 = 0\\
y + 3 = 0
\end{array} \right. \to \left\{ \begin{array}{l}
x = 2\\
y = - 3
\end{array} \right.\\
d.D = 8x + 2 - 4{x^2} - x - 5\\
= - \left( {4{x^2} - 7x + 3} \right)\\
= - \left( {4{x^2} - 2.2x.\dfrac{7}{4} + \dfrac{{49}}{{16}} - \dfrac{1}{{16}}} \right)\\
= - {\left( {2x - \dfrac{7}{4}} \right)^2} + \dfrac{1}{{16}}\\
Do:{\left( {2x - \dfrac{7}{4}} \right)^2} \ge 0\\
\to - {\left( {2x - \dfrac{7}{4}} \right)^2} \le 0\\
\to - {\left( {2x - \dfrac{7}{4}} \right)^2} + \dfrac{1}{{16}} \le \dfrac{1}{{16}}\\
\to Max = \dfrac{1}{{16}}\\
\Leftrightarrow 2x - \dfrac{7}{4} = 0\\
\Leftrightarrow x = \dfrac{7}{8}
\end{array}\)
\(\begin{array}{l}
E = {x^2} - 4 - 4{x^2} + 4x\\
= - 3{x^2} + 4x - 4\\
= - \left( {3{x^2} + 2.x\sqrt 3 .\dfrac{2}{{\sqrt 3 }} + \dfrac{4}{3} - \dfrac{{16}}{3}} \right)\\
= - {\left( {x\sqrt 3 + \dfrac{2}{{\sqrt 3 }}} \right)^2} + \dfrac{{16}}{3}\\
Do:{\left( {x\sqrt 3 + \dfrac{2}{{\sqrt 3 }}} \right)^2} \ge 0\\
\to - {\left( {x\sqrt 3 + \dfrac{2}{{\sqrt 3 }}} \right)^2} \le 0\\
\to - {\left( {x\sqrt 3 + \dfrac{2}{{\sqrt 3 }}} \right)^2} + \dfrac{{16}}{3} \le \dfrac{{16}}{3}\\
\to Max = \dfrac{{16}}{3}\\
\Leftrightarrow x\sqrt 3 + \dfrac{2}{{\sqrt 3 }} = 0\\
\to x = - \dfrac{2}{3}\\
f.H = - \left( {{x^2} + {y^2} + 1 - 2xy - 2x + 2y} \right) - 3{y^2} + 12y - 2011\\
= - {\left( { - x + y + 1} \right)^2} - \left( {3{y^2} - 2.y\sqrt 3 .2\sqrt 3 + 12} \right) - 1999\\
= - {\left( { - x + y + 1} \right)^2} - {\left( {y\sqrt 3 - 2\sqrt 3 } \right)^2} - 1999\\
Do:{\left( { - x + y + 1} \right)^2} + {\left( {y\sqrt 3 - 2\sqrt 3 } \right)^2} \ge 0\forall x;y \in R\\
\to - {\left( { - x + y + 1} \right)^2} - {\left( {y\sqrt 3 - 2\sqrt 3 } \right)^2} \le 0\\
\to - {\left( { - x + y + 1} \right)^2} - {\left( {y\sqrt 3 - 2\sqrt 3 } \right)^2} - 1999 \le - 1999\\
\to Max = - 1999\\
\Leftrightarrow \left\{ \begin{array}{l}
- x + y + 1 = 0\\
y\sqrt 3 - 2\sqrt 3 = 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = 2\\
x = 3
\end{array} \right.
\end{array}\)