Đáp án:
Giải thích các bước giải:
\(\begin{array}{l}
1.\lim {n^2}\left( {3 - \frac{{101}}{n} - \frac{{2020}}{{{n^2}}}} \right) = + \infty \\
2.\lim {n^3}.\left( { - 6 + \frac{{32}}{n} - \frac{5}{{{n^3}}}} \right) = - \infty \\
3.\lim {n^4}.\left( { - 3 - \frac{{50}}{{{n^3}}} + \frac{{11}}{{{n^4}}}} \right) = - \infty \\
4.\lim n\left( {\sqrt {2 - \frac{3}{n} + \frac{7}{{{n^2}}}} } \right) = + \infty \\
5.\lim n\left( {\sqrt[3]{{\frac{{2021}}{{{n^3}}} + \frac{2}{{{n^2}}} - 1}}} \right) = - \infty \\
6.\lim {3^n}\left( {{2^5}.{{\left( {\frac{2}{3}} \right)}^n} - 4.3} \right) = - \infty \\
7. - \infty \\
8. + \infty \\
9. - \infty \\
10.\lim \frac{{2.{{\left( {\frac{2}{5}} \right)}^n} - 3 + \frac{3}{{{5^n}}}}}{{3.{{\left( {\frac{2}{5}} \right)}^n} + 7.{{\left( {\frac{4}{5}} \right)}^n}}} = - \infty
\end{array}\)