Phương pháp giải: Phương trình bậc hai \(a{z^2} + bz + c = 0\) có nghiệm \({z_1},\,\,{z_2}\) thì \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \dfrac{c}{a}\). Giải chi tiết:Gọi \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 3z + 7 = 0\) \( \Rightarrow \left| {{z_1}} \right| = \left| {{z_2}} \right| = \dfrac{c}{a} = \dfrac{7}{1} = 7\). Vậy \(T = \left| {z_1^2} \right| + \left| {z_2^2} \right| = 7 + 7 = 14.\) Chọn C.