Đáp án:
a.875kg/m^3 và R=6,11cm
b.x=4cm
Giải thích các bước giải:
a.Vì vật I nổi trên mặt nước nên ta có hệ thức:
FA=PI⇔dnVc=dvVv⇔ρnSHc=ρvSH⇔ρv=HcHρn=8−18.1=875kg/m3FA=PI⇔dnVc=dvVv⇔ρnSHc=ρvSH⇔ρv=HcHρn=8−18.1=875kg/m3
Áp dụng định luật bảo toàn thể tích ta có:
Sb.h=SIHc⇒Sb=HchSI=73.πRI2=πRb2⇒Rb=√73RI=√73.4=6,11cmSb.h=SIHc⇒Sb=HchSI=73.πRI2=πRb2⇒Rb=73RI=73.4=6,11cm
b.Gọi x là độ cao của vật II nổi lên trên mặt nước, ta có hệ thức:
FA=PII⇔ρngVc=ρvgVII⇔ρn13(SH−Sxx)=ρv13SH⇔πRII2H−πrx2x=πρvρnRII2H⇔RII2H−(xH)2RII2x=0,875RII2H⇔x3=0,125H3⇔x=0,5H=4cmFA=PII⇔ρngVc=ρvgVII⇔ρn13(SH−Sxx)=ρv13SH⇔πRII2H−πrx2x=πρvρnRII2H⇔RII2H−(xH)2RII2x=0,875RII2H⇔x3=0,125H3⇔x=0,5H=4cm
Vậy đỉnh của hình chóp nổi lên trên mặt nước một đoạn x=4cm