a) Giải phương trình: \(\sqrt {x - 2} + \sqrt {4 - x} = 2{x^2} - 5x - 1\).
b) Giải hệ phương trình: \(\left\{ \begin{array}{l}xy - 3y = 4{x^2}\\{y^2} + 2y + 7 = 7{x^2} + 8x\end{array} \right.\)
A.\(\begin{array}{l}a)\,\,x = 3\\b)\,\,\left( {\frac{{ - 2 + \sqrt {13} }}{3};\frac{{ - 5 + \sqrt {13} }}{3}} \right)\\\,\,\,\,\,\,\left( {\frac{{ - 2 - \sqrt {13} }}{3};\frac{{ - 5 - \sqrt {13} }}{3}} \right)\\\,\,\,\,\,\,\left( {\frac{{ - 5 + 2\sqrt {22} }}{3};\frac{{ - 26 + 2\sqrt {22} }}{3}} \right)\\\,\,\,\,\,\,\left( {\frac{{ - 5 - 2\sqrt {22} }}{3};\frac{{ - 26 - 2\sqrt {22} }}{3}} \right)\end{array}\)
B.\(\begin{array}{l}a)\,\,x = 3\\b)\,\,\left( {\frac{{ - 2 + \sqrt {13} }}{3};\frac{{ - 5 + \sqrt {13} }}{3}} \right)\\\,\,\,\,\,\,\left( {\frac{{ - 5 + 2\sqrt {22} }}{3};\frac{{ - 26 + 2\sqrt {22} }}{3}} \right)\end{array}\)
C.\(\begin{array}{l}a)\,\,x = 3\\b)\,\,\left( {\frac{{ - 2 + \sqrt {13} }}{3};\frac{{ - 5 + \sqrt {13} }}{3}} \right)\\\,\,\,\,\,\,\left( {\frac{{ - 2 - \sqrt {13} }}{3};\frac{{ - 5 - \sqrt {13} }}{3}} \right)\end{array}\)
D.\(\begin{array}{l}a)\,\,x = \pm 3\\b)\,\,\left( {\frac{{ - 2 + \sqrt {13} }}{3};\frac{{ - 5 + \sqrt {13} }}{3}} \right)\\\,\,\,\,\,\,\left( {\frac{{ - 2 - \sqrt {13} }}{3};\frac{{ - 5 - \sqrt {13} }}{3}} \right)\\\,\,\,\,\,\,\left( {\frac{{ - 5 + 2\sqrt {22} }}{3};\frac{{ - 26 + 2\sqrt {22} }}{3}} \right)\\\,\,\,\,\,\,\left( {\frac{{ - 5 - 2\sqrt {22} }}{3};\frac{{ - 26 - 2\sqrt {22} }}{3}} \right)\end{array}\)