Đáp án:
Bạn tham khảo đáp án bên dưới nhé!
Giải thích các bước giải:
$\left(\dfrac{1,5+1-0,75}{2,5+\dfrac53-1,25}+\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac5{11}-\dfrac5{12}}\right):\dfrac{1890}{2005}+115\\=\left(\dfrac{\dfrac32+\dfrac33-\dfrac34}{\dfrac52+\dfrac53-\dfrac54}+\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{-5}{8}-\dfrac{-5}{10}+\dfrac{-5}{11}+\dfrac{-5}{12}}\right):\dfrac{396}{401}+115\\=\left(\dfrac{3.\left(\dfrac12+\dfrac13-\dfrac14\right)}{5.\left(\dfrac12+\dfrac13-\dfrac14\right)}+\dfrac{3.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{-5.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}\right):\dfrac{396}{401}+115\\=\left(\dfrac35+\dfrac{-3}5\right):\dfrac{396}{401}+115\\=0:\dfrac{396}{401}+115\\=115\\B=\dfrac13+\dfrac{1}{3^2}+\dfrac{1}{3^3}\ +\,.\!.\!.+\ \dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\\Rightarrow 3B=3.\left(\dfrac13+\dfrac{1}{3^2}+\dfrac{1}{3^3}\ +\,.\!.\!.+\ \dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\right)\\\Rightarrow 3B=1+\dfrac13+\dfrac{1}{3^2}\ +\,.\!.\!.+\ \dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\\\Rightarrow 3B -B=\left(1+\dfrac13+\dfrac{1}{3^2}\ +\,.\!.\!.+\ \dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\right)-\left(\dfrac13+\dfrac{1}{3^2}+\dfrac{1}{3^3}\ +\,.\!.\!.+\ \dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\right)\\\Rightarrow 2B=1-\dfrac{1}{3^{2005}}\\\Rightarrow B=\dfrac{1-\dfrac{1}{3^{2005}}}{2}\\\Rightarrow B=\dfrac12-\dfrac{1}{2.3^{2005}}<\dfrac12\\\Rightarrow B<\dfrac12$