Đáp án:
\(\begin{array}{l}
5,\\
x = \dfrac{{105}}{{16}}\\
6,\\
x = 2\\
7,\\
x = \dfrac{{81}}{2}\\
8,\\
x = 40\\
9,\\
x = 6\\
10,\\
x \in \left\{ {2; - 1} \right\}\\
11,\\
x = 24\\
12,
\end{array}\)
Phương trình vô nghiệm
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
5,\\
ĐKXĐ:\,\,\,\,x \ge 5\\
\sqrt {x - 5} + \sqrt {4x - 20} - \dfrac{1}{5}.\sqrt {9x - 45} = 3\\
\Leftrightarrow \sqrt {x - 5} + \sqrt {4.\left( {x - 5} \right)} - \dfrac{1}{5}.\sqrt {9.\left( {x - 5} \right)} = 3\\
\Leftrightarrow \sqrt {x - 5} + 2.\sqrt {x - 5} - \dfrac{1}{5}.3.\sqrt {x - 5} = 3\\
\Leftrightarrow \sqrt {x - 5} + 2\sqrt {x - 5} - \dfrac{3}{5}\sqrt {x - 5} = 3\\
\Leftrightarrow \dfrac{{12}}{5}\sqrt {x - 5} = 3\\
\Leftrightarrow \sqrt {x - 5} = \dfrac{5}{4}\\
\Leftrightarrow x - 5 = \dfrac{{25}}{{16}}\\
\Leftrightarrow x = \dfrac{{25}}{{16}} + 5\\
\Leftrightarrow x = \dfrac{{105}}{{16}}\,\,\,\,\,\,\left( {t/m} \right)\\
Vậy\,\,\,\,\,\,\,x = \dfrac{{105}}{{16}}\\
6,\\
ĐKXĐ:\,\,\,x \ge 1\\
\sqrt {x - 1} + \sqrt {4x - 4} - \sqrt {25x - 25} + 2 = 0\\
\Leftrightarrow \sqrt {x - 1} + \sqrt {4.\left( {x - 1} \right)} - \sqrt {25\left( {x - 1} \right)} + 2 = 0\\
\Leftrightarrow \sqrt {x - 1} + 2.\sqrt {x - 1} - 5\sqrt {x - 1} + 2 = 0\\
\Leftrightarrow - 2\sqrt {x - 1} + 2 = 0\\
\Leftrightarrow \sqrt {x - 1} = 1\\
\Leftrightarrow x - 1 = 1\\
\Leftrightarrow x = 2\,\,\,\,\,\,\,\,\,\left( {t/m} \right)\\
Vậy\,\,\,\,x = 2\\
7,\\
ĐKXĐ:\,\,\,x \ge 0\\
\dfrac{1}{3}\sqrt {2x} - \sqrt {8x} + \sqrt {18x} - 10 = 2\\
\Leftrightarrow \dfrac{1}{3}\sqrt {2x} - \sqrt {4.2x} + \sqrt {9.2x} - 10 = 2\\
\Leftrightarrow \dfrac{1}{3}\sqrt {2x} - 2.\sqrt {2x} + 3\sqrt {2x} = 12\\
\Leftrightarrow \dfrac{4}{3}\sqrt {2x} = 12\\
\Leftrightarrow \sqrt {2x} = 12:\dfrac{4}{3}\\
\Leftrightarrow \sqrt {2x} = 9\\
\Leftrightarrow 2x = 81\\
\Leftrightarrow x = \dfrac{{81}}{2}\,\,\,\,\,\left( {t/m} \right)\\
Vậy\,\,\,\,x = \dfrac{{81}}{2}\\
8,\\
ĐKXĐ:\,\,\,x \ge - \dfrac{1}{2}\\
\sqrt {18x + 9} - \sqrt {8x + 4} + \dfrac{1}{3}\sqrt {2x + 1} = 4\\
\Leftrightarrow \sqrt {9.\left( {2x + 1} \right)} - \sqrt {4.\left( {2x + 1} \right)} + \dfrac{1}{3}.\sqrt {2x + 1} = 4\\
\Leftrightarrow 3.\sqrt {2x + 1} - 2.\sqrt {2x + 1} + \dfrac{1}{3}.\sqrt {2x + 1} = 4\\
\Leftrightarrow \dfrac{4}{3}\sqrt {2x + 1} = 4\\
\Leftrightarrow \sqrt {2x + 1} = 3\\
\Leftrightarrow \sqrt {2x + 1} = 9\\
\Leftrightarrow 2x + 1 = 81\\
\Leftrightarrow 2x = 80\\
\Leftrightarrow x = 40\,\,\,\,\left( {t/m} \right)\\
Vậy\,\,\,\,x = 40\\
9,\\
ĐKXĐ:\,\,\,x \ge 2\\
\sqrt {4x - 8} - \dfrac{1}{2}\sqrt {x - 2} + \sqrt {9x - 18} = 9\\
\Leftrightarrow \sqrt {4.\left( {x - 2} \right)} - \dfrac{1}{2}\sqrt {x - 2} + \sqrt {9.\left( {x - 2} \right)} = 9\\
\Leftrightarrow 2.\sqrt {x - 2} - \dfrac{1}{2}\sqrt {x - 2} + 3.\sqrt {x - 2} = 9\\
\Leftrightarrow \dfrac{9}{2}\sqrt {x - 2} = 9\\
\Leftrightarrow \sqrt {x - 2} = 2\\
\Leftrightarrow x - 2 = 4\\
\Leftrightarrow x = 6\,\,\,\,\,\left( {t/m} \right)\\
Vậy\,\,\,\,\,x = 6\\
10,\\
ĐKXĐ:\,\,\,\forall \,x\\
\sqrt {{{\left( {2x - 1} \right)}^2}} = 3\\
\Leftrightarrow \left| {2x - 1} \right| = 3\\
\Leftrightarrow \left[ \begin{array}{l}
2x - 1 = 3\\
2x - 1 = - 3
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = 4\\
2x = - 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 2\\
x = - 1
\end{array} \right.\\
Vậy\,\,\,\,x \in \left\{ {2; - 1} \right\}\\
11,\\
ĐKXĐ:\,\,\,\,x \ge - 1\\
3\sqrt {4x + 4} - \sqrt {9x + 9} - 8\sqrt {\dfrac{{x + 1}}{{16}}} = 5\\
\Leftrightarrow 3.\sqrt {4.\left( {x + 1} \right)} - \sqrt {9.\left( {x + 1} \right)} - 8\sqrt {\dfrac{1}{{16}}.\left( {x + 1} \right)} = 5\\
\Leftrightarrow 3.2\sqrt {x + 1} - 3\sqrt {x + 1} - 8.\dfrac{1}{4}\sqrt {x + 1} = 5\\
\Leftrightarrow 6\sqrt {x + 1} - 3\sqrt {x + 1} - 2\sqrt {x + 1} = 5\\
\Leftrightarrow \sqrt {x + 1} = 5\\
\Leftrightarrow x + 1 = 25\\
\Leftrightarrow x = 24\,\,\,\,\left( {t/m} \right)\\
Vậy\,\,\,\,\,x = 24\\
12,\\
ĐKXĐ:\,\,\,\,\forall \,x\\
\sqrt {9{x^2} + 18} + 2\sqrt {{x^2} + 2} - \sqrt {25{x^2} + 50} + 3 = 0\\
\Leftrightarrow \sqrt {9.\left( {{x^2} + 2} \right)} + 2\sqrt {{x^2} + 2} - \sqrt {25.\left( {{x^2} + 2} \right)} + 3 = 0\\
\Leftrightarrow 3\sqrt {{x^2} + 2} + 2.\sqrt {{x^2} + 2} - 5\sqrt {{x^2} + 2} + 3 = 0\\
\Leftrightarrow 0 + 3 = 0\,\,\,\,\left( {vn} \right)
\end{array}\)
Vậy phương trình đã cho vô nghiệm.