Đáp án:
Giải thích các bước giải:
$F=x^2+y^2-2x+3y+10$
$=x^2-2x+1+y^2+3y+9$
$=(x-1)^2+\left (y^2+3y+\dfrac{9}{4} \right )+\dfrac{27}{4}$
$=(x-1)^2+\left (y+\dfrac{3}{2} \right )^2+\dfrac{27}{4}$
$(x-1)^2 ; \left (y+\dfrac{3}{2} \right )^2 \geq 0∀x;y$
$⇒(x-1)^2+\left (y+\dfrac{3}{2} \right )^2+\dfrac{27}{4} \geq \dfrac{27}{4} ∀x;y$
Dấu "=" xảy ra khi và chỉ khi :
$\left\{ \begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix} \right.$
$G=x^2+y^2+2xy-4x-4y+10$
$G=2x^2-x^2+2y^2-y^2+2xy-4x-4y+10$
$=(2x^2-4x+2)+(2y^2-4y+2)-(x^2-2xy+y^2)+6$
$=2(x-1)^2+2(y-1)^2-(x-y)^2+6$
$2(x-1)^2 ; 2(y-1)^2 ;( x-y)^2 \geq 0∀x ; y$
$⇒2(x-1)^2+2(y-1)^2-(x-y)^2+6 \geq 6∀x;y$
Dấu "=" xảy ra khi và chỉ khi :
$\left\{ \begin{matrix}x=1\\y=1\\x=y\end{matrix} \right.$
$⇒x=y=1$
$H=x^2+5y^2-4xy-3y+10$
$=x^2-4xy+4y^2+y^2-3y+\dfrac{9}{4}+\dfrac{31}{4}$
$=(x-2y)^2+\left (y-\dfrac{3}{2} \right )^2+\dfrac{31}{4}$
$(x-2y)^2 ; \left (y-\dfrac{3}{2} \right )^2 \geq 0∀x;y$
$⇒(x-2y)^2+\left (y-\dfrac{3}{2} \right )^2+\dfrac{31}{4} \geq \dfrac{31}{4} ∀x;y$
Dấu "=" xảy ra khi và chỉ khi :
$\left\{ \begin{matrix}x=2y\\y=\dfrac{3}{2}\end{matrix} \right.$
$⇔\left\{ \begin{matrix}x=2.\dfrac{3}{2}\\y=\dfrac{3}{2}\end{matrix} \right.$
$⇔\left\{ \begin{matrix}x=3\\y=\dfrac{3}{2}\end{matrix} \right.$