Đáp án:
a) \(Min = - \dfrac{5}{4}\)
b) Min=3
c) \(Min = \dfrac{{37}}{4}\)
d) \(Min = \dfrac{2}{3}\)
Giải thích các bước giải:
\(\begin{array}{l}
B1:\\
a){x^2} - 2.x.\dfrac{3}{2} + \dfrac{9}{4} - \dfrac{5}{4}\\
= {\left( {x - \dfrac{3}{2}} \right)^2} - \dfrac{5}{4}\\
Do:{\left( {x - \dfrac{3}{2}} \right)^2} \ge 0\forall x\\
\to {\left( {x - \dfrac{3}{2}} \right)^2} - \dfrac{5}{4} \ge - \dfrac{5}{4}\\
\to Min = - \dfrac{5}{4}\\
\Leftrightarrow x - \dfrac{3}{2} = 0\\
\to x = \dfrac{3}{2}\\
b)2{x^2} + 4x + 5 = 2{x^2} + 2.x\sqrt 2 .\sqrt 2 + 2 + 3\\
= {\left( {x\sqrt 2 + \sqrt 2 } \right)^2} + 3\\
Do:{\left( {x\sqrt 2 + \sqrt 2 } \right)^2} \ge 0\forall x\\
\to {\left( {x\sqrt 2 + \sqrt 2 } \right)^2} + 3 \ge 3\\
\to Min = 3\\
\Leftrightarrow x = - 1\\
c){x^2} + 2.x.\dfrac{7}{2} + \dfrac{{49}}{4} + \dfrac{{37}}{4}\\
= {\left( {x + \dfrac{7}{2}} \right)^2} + \dfrac{{37}}{4}\\
Do:{\left( {x + \dfrac{7}{2}} \right)^2} \ge 0\forall x\\
\to {\left( {x + \dfrac{7}{2}} \right)^2} + \dfrac{{37}}{4} \ge \dfrac{{37}}{4}\\
\to Min = \dfrac{{37}}{4}\\
\Leftrightarrow x = - \dfrac{7}{2}\\
d)3{x^2} - 2.x\sqrt 3 .\dfrac{1}{{\sqrt 3 }} + \dfrac{1}{3} + \dfrac{2}{3}\\
= {\left( {x\sqrt 3 - \dfrac{1}{{\sqrt 3 }}} \right)^2} + \dfrac{2}{3}\\
Do:{\left( {x\sqrt 3 - \dfrac{1}{{\sqrt 3 }}} \right)^2} \ge 0\forall x\\
\to {\left( {x\sqrt 3 - \dfrac{1}{{\sqrt 3 }}} \right)^2} + \dfrac{2}{3} \ge \dfrac{2}{3}\\
\to Min = \dfrac{2}{3}\\
\to x\sqrt 3 - \dfrac{1}{{\sqrt 3 }} = 0\\
\to x = \dfrac{1}{3}
\end{array}\)
( bài 2 thiếu đề bạn nha, luôn đúng nhưng đúng với cái gì bạn )