lim(n - 3 - căn(n2 - căn(5)n +1) = căn(5)a + b.
Tính a + b
\(lim\left(n-3-\sqrt{n^2-\sqrt{5}n+1}\right)=lim\dfrac{-6n+n\sqrt{5}+8}{n+3+\sqrt{n^2-\sqrt{5}n+1}}\)
=\(lim\dfrac{n\left(-6+\sqrt{5}+\dfrac{8}{n}\right)}{n\left(1+\dfrac{3}{n}+\sqrt{1-\dfrac{\sqrt{5}}{n}+\dfrac{1}{n^2}}\right)}=lim\dfrac{-6+\sqrt{5}+\dfrac{8}{n}}{1+\dfrac{3}{n}+\sqrt{1-\dfrac{\sqrt{5}}{n}+\dfrac{1}{n^2}}}=\dfrac{\sqrt{5}}{2}-3\)
\(\Rightarrow a=\dfrac{1}{2};b=-3\)\(\Rightarrow a+b=\dfrac{-5}{2}\)
Nhờ các cao thủ giải dùm mình cái nha. Tks.
Tìm Lim (\(\sqrt[3]{27n^3-7n^2}-3n\) )
Tìm giới hạn:
Lim \(n\left(\sqrt{n^2+2n}-2\sqrt{n^2+n}+n\right)\)
Cho a, b là hai số cho trước với \(be0\), tìm các giới hạn sau :
1. \(\lim\limits_{x\rightarrow0}\frac{\tan ax}{\tan bx}\)
2. \(\lim\limits_{x\rightarrow0}\frac{1-\cos ax}{x^2}\)
Cho m là số nguyên dương. Tìm giới hạn sau :
\(L_m=\lim\limits_{x\rightarrow1}\left(\frac{m}{1-x^m}-\frac{1}{1-x}\right)\)
Tìm giới hạn :
\(L=\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{\left(x+a_1\right)\left(x+a_1\right)\left(x+a_1\right)}-x\right)\)
Tìm giới hạn : \(L=\lim\limits_{x\rightarrow0}\frac{\sqrt[4]{\cos x}-\sqrt[5]{\cos x}}{\sin^2x}\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow10}\frac{lgx-1}{x-10}\)
\(\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{\tan x}\)
\(\lim\limits_{x\rightarrow0}\frac{e^x-1}{\sqrt{x+1}-1}\)
\(\lim\limits_{x\rightarrow0}\frac{e^{5x+3}-e^3}{2x}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến