Đáp án:
$\begin{array}{l}
a)\overrightarrow {AB} = - \frac{2}{3}\overrightarrow {CM} - \frac{4}{3}\overrightarrow {BN} \\
\Rightarrow \overrightarrow {AB} = - \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {CB} } \right) - \frac{4}{3}.\frac{1}{2}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right)\\
\Rightarrow \overrightarrow {AB} = - \frac{1}{3}.\overrightarrow {CA} - \frac{1}{3}\overrightarrow {CB} - \frac{2}{3}\overrightarrow {BA} - \frac{2}{3}\overrightarrow {BC} \\
\Rightarrow \overrightarrow {AB} = \frac{1}{3}\overrightarrow {AC} + \frac{1}{3}\overrightarrow {BC} + \frac{2}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {BC} \\
\Rightarrow \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} = \frac{{ - 1}}{3}\overrightarrow {BC} \\
\Rightarrow \frac{1}{3}\overrightarrow {CB} = \frac{1}{3}\overrightarrow {CB} \left( {ld} \right)\\
b)\\
\overrightarrow {AC} = - \frac{4}{3}\overrightarrow {CM} - \frac{2}{3}\overrightarrow {BN} \\
\Rightarrow \overrightarrow {AC} = - \frac{4}{3}.\frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {CB} } \right) - \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right)\\
\Rightarrow \overrightarrow {AC} = - \frac{2}{3}\overrightarrow {CA} - \frac{2}{3}\overrightarrow {CB} - \frac{1}{3}.\overrightarrow {BA} - \frac{1}{3}\overrightarrow {BC} \\
\Rightarrow \overrightarrow {AC} + \frac{2}{3}\overrightarrow {CA} = \frac{2}{3}\overrightarrow {BC} - \frac{1}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AB} \\
\Rightarrow \frac{1}{3}\overrightarrow {AC} = \frac{1}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AB} = \frac{1}{3}\overrightarrow {AC} \left( {ld} \right)\\
C)\overrightarrow {MN} = \frac{1}{3}\overrightarrow {BN} - \frac{1}{3}\overrightarrow {CM} \\
\Rightarrow \frac{1}{2}\overrightarrow {BC} = \frac{1}{3}.\frac{1}{2}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right) - \frac{1}{3}.\frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {CB} } \right)\\
\Rightarrow \frac{1}{2}\overrightarrow {BC} = \frac{1}{6}\overrightarrow {BA} + \frac{1}{6}\overrightarrow {BC} - \frac{1}{6}\overrightarrow {CA} - \frac{1}{6}\overrightarrow {CB} \\
\Rightarrow \frac{1}{2}\overrightarrow {BC} - \frac{1}{6}\overrightarrow {BC} - \frac{1}{6}\overrightarrow {BC} = \frac{1}{6}\left( {\overrightarrow {BA} + \overrightarrow {AC} } \right)\\
\Rightarrow \frac{1}{6}\overrightarrow {BC} = \frac{1}{6}\overrightarrow {BC} \left( {ld} \right)
\end{array}$