Đáp án:
\(\begin{array}{l}
3,\\
a,\\
\cos \alpha = 0,6\\
\tan \alpha = \dfrac{4}{3}\\
\cot \alpha = \dfrac{3}{4}\\
b,\\
\sin \alpha = 0,8\\
\tan \alpha = \dfrac{4}{3}\\
\cot \alpha = \dfrac{3}{4}\\
c,\\
\cot \alpha = \dfrac{1}{3}\\
\cos \alpha = \dfrac{{\sqrt {10} }}{{10}}\\
\sin \alpha = \dfrac{{3\sqrt {10} }}{{10}}\\
d,\\
\tan \alpha = \dfrac{1}{2}\\
\sin \alpha = \dfrac{{\sqrt 5 }}{5}\\
\cos \alpha = \dfrac{{2\sqrt 5 }}{5}\\
4,\\
\cot \alpha = \dfrac{4}{3}\\
5,\\
\tan B = \dfrac{5}{{12}}\\
6,\\
a,\,\,\,\,{\sin ^2}\alpha \\
b,\,\,\,2\\
c,\,\,\,{\sin ^3}\alpha \\
d,\,\,\,\,1\\
e,\,\,\,\,{\sin ^2}\alpha \\
f,\,\,\,\,1
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
3,\\
0^\circ < \alpha < 90^\circ \Rightarrow \left\{ \begin{array}{l}
0 < \sin \alpha < 1\\
0 < \cos \alpha < 1
\end{array} \right.\\
a,\\
{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\
\Leftrightarrow {0,8^2} + {\cos ^2}\alpha = 1\\
\Leftrightarrow 0,64 + {\cos ^2}\alpha = 1\\
\Leftrightarrow {\cos ^2}\alpha = 0,36\\
0 < \cos \alpha < 1 \Rightarrow \cos \alpha = 0,6\\
\Rightarrow \tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }} = \dfrac{{0,8}}{{0,6}} = \dfrac{4}{3}\\
\cot \alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }} = \dfrac{{0,6}}{{0,8}} = \dfrac{3}{4}\\
b,\\
{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\
\Leftrightarrow {\sin ^2}\alpha + {0,6^2} = 1\\
\Leftrightarrow {\sin ^2}\alpha + 0,36 = 1\\
\Leftrightarrow {\sin ^2}\alpha = 0,64\\
0 < \sin \alpha < 1 \Rightarrow \sin \alpha = 0,8\\
\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }} = \dfrac{{0,8}}{{0,6}} = \dfrac{4}{3}\\
\cot \alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }} = \dfrac{{0,6}}{{0,8}} = \dfrac{3}{4}\\
c,\\
\tan \alpha = 3 \Rightarrow \left\{ \begin{array}{l}
\cot \alpha = \dfrac{1}{{\tan \alpha }} = \dfrac{1}{3}\\
\dfrac{{\sin \alpha }}{{\cos \alpha }} = 3 \Leftrightarrow \sin \alpha = 3\cos \alpha
\end{array} \right.\\
{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\
\Leftrightarrow {\left( {3\cos \alpha } \right)^2} + {\cos ^2}\alpha = 1\\
\Leftrightarrow 9{\cos ^2}\alpha + {\cos ^2}\alpha = 1\\
\Leftrightarrow 10{\cos ^2}\alpha = 1\\
\Leftrightarrow {\cos ^2}\alpha = \dfrac{1}{{10}}\\
0 < \cos \alpha < 1 \Rightarrow \cos \alpha = \dfrac{{\sqrt {10} }}{{10}}\\
\sin \alpha = 3\cos \alpha = \dfrac{{3\sqrt {10} }}{{10}}\\
d,\\
\cot \alpha = 2 \Rightarrow \left\{ \begin{array}{l}
\tan \alpha = \dfrac{1}{{\cot \alpha }} = \dfrac{1}{2}\\
\dfrac{{\cos \alpha }}{{\sin \alpha }} = 2 \Leftrightarrow \cos \alpha = 2\sin \alpha
\end{array} \right.\\
{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\
\Leftrightarrow {\sin ^2}\alpha + {\left( {2\sin \alpha } \right)^2} = 1\\
\Leftrightarrow {\sin ^2}\alpha + 4{\sin ^2}\alpha = 1\\
\Leftrightarrow 5{\sin ^2}\alpha = 1\\
\Leftrightarrow {\sin ^2}\alpha = \dfrac{1}{5}\\
0 < \sin \alpha < 1 \Rightarrow \sin \alpha = \dfrac{{\sqrt 5 }}{5}\\
\cos \alpha = 2\sin \alpha = \dfrac{{2\sqrt 5 }}{5}\\
4,\\
0 < \alpha < 90^\circ \Rightarrow \left\{ \begin{array}{l}
0 < \sin \alpha < 1\\
0 < \cos \alpha < 1
\end{array} \right.\\
\cos \alpha - \sin \alpha = \dfrac{1}{5}\\
\Leftrightarrow \cos = \sin \alpha + \dfrac{1}{5}\\
{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\
\Leftrightarrow {\sin ^2}\alpha + {\left( {\sin \alpha + \dfrac{1}{5}} \right)^2} = 1\\
\Leftrightarrow {\sin ^2}\alpha + {\sin ^2}\alpha + \dfrac{2}{5}\sin \alpha + \dfrac{1}{{25}} = 1\\
\Leftrightarrow 2{\sin ^2}\alpha + \dfrac{2}{5}\sin \alpha - \dfrac{{24}}{{25}} = 0\\
\Leftrightarrow {\sin ^2}\alpha + \dfrac{1}{5}\sin \alpha - \dfrac{{12}}{{25}} = 0\\
\Leftrightarrow \left( {{{\sin }^2}\alpha - \dfrac{3}{5}\sin \alpha } \right) + \left( {\dfrac{4}{5}\sin \alpha - \dfrac{{12}}{{25}}} \right) = 0\\
\Leftrightarrow \sin \alpha \left( {\sin \alpha - \dfrac{3}{5}} \right) + \dfrac{4}{5}\left( {\sin \alpha - \dfrac{3}{5}} \right) = 0\\
\Leftrightarrow \left( {\sin \alpha - \dfrac{3}{5}} \right)\left( {\sin \alpha + \dfrac{4}{5}} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin \alpha - \dfrac{3}{5} = 0\\
\sin \alpha + \dfrac{4}{5} = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\sin \alpha = \dfrac{3}{5}\\
\sin \alpha = - \dfrac{4}{5}
\end{array} \right.\\
0 < \sin \alpha < 1 \Rightarrow \sin \alpha = \dfrac{3}{5} \Rightarrow \cos \alpha = \dfrac{4}{5}\\
\cot \alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }} = \dfrac{4}{3}\\
5,\\
Tam\,\,giác\,\,ABC\,\,vuông\,\,tại\,\,C\,\,nên:\\
\widehat A + \widehat B = 90^\circ \Rightarrow \left\{ \begin{array}{l}
\sin B = \cos \left( {90^\circ - B} \right) = \cos A\\
0 < \widehat B < 90^\circ \Rightarrow 0 < \cos B < 1
\end{array} \right.\\
\sin B = \cos A = \dfrac{5}{{13}}\\
{\sin ^2}B + {\cos ^2}B = 1\\
\Leftrightarrow {\left( {\dfrac{5}{{13}}} \right)^2} + {\cos ^2}B = 1\\
\Leftrightarrow \dfrac{{25}}{{169}} + {\cos ^2}B = 1\\
\Leftrightarrow {\cos ^2}B = 1 - \dfrac{{25}}{{169}}\\
\Leftrightarrow {\cos ^2}B = \dfrac{{144}}{{169}}\\
0 < \cos B < 1 \Rightarrow \cos B = \dfrac{{12}}{{13}}\\
\tan B = \dfrac{{\sin B}}{{\cos B}} = \dfrac{5}{{12}}\\
6,\\
a,\\
\left( {1 - \cos \alpha } \right)\left( {1 + \cos \alpha } \right) = 1 - {\cos ^2}\alpha = {\sin ^2}\alpha \\
b,\\
1 + {\sin ^2}\alpha + {\cos ^2}\alpha = 1 + \left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) = 1 + 1 = 2\\
c,\\
\sin \alpha - \sin \alpha .{\cos ^2}\alpha = \sin \alpha .\left( {1 - {{\cos }^2}\alpha } \right) = \sin \alpha .{\sin ^2}\alpha = {\sin ^3}\alpha \\
d,\\
{\sin ^4}\alpha + {\cos ^4}\alpha + 2{\sin ^2}\alpha .{\cos ^2}\alpha \\
= \left( {{{\sin }^2}\alpha } \right) + 2.{\sin ^2}\alpha .{\cos ^2}\alpha + {\left( {{{\cos }^2}\alpha } \right)^2}\\
= {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^2}\\
= {1^2} = 1\\
e,\\
{\tan ^2}\alpha - {\sin ^2}\alpha .{\tan ^2}\alpha \\
= {\tan ^2}\alpha .\left( {1 - {{\sin }^2}\alpha } \right)\\
= {\left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)^2}.{\cos ^2}\alpha \\
= \dfrac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }}.{\cos ^2}\alpha \\
= {\sin ^2}\alpha \\
f,\\
{\cos ^2}\alpha + {\tan ^2}\alpha .{\cos ^2}\alpha \\
= {\cos ^2}\alpha .\left( {1 + {{\tan }^2}\alpha } \right)\\
= {\cos ^2}\alpha .\left( {1 + \dfrac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }}} \right)\\
= {\cos ^2}\alpha .\dfrac{{{{\cos }^2}\alpha + {{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }}\\
= {\cos ^2}\alpha .\dfrac{1}{{{{\cos }^2}\alpha }}\\
= 1
\end{array}\)