\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{1 - 3\left| x \right|}}\)
A.\( \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{1 - 3\left| x \right|}} = - \infty \).
B.\( \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{1 - 3\left| x \right|}} = + \infty \). \( \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{1 - 3\left| x \right|}} = - \infty \).
C.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{1 - 3\left| x \right|}} = \dfrac{1}{3} \).
D.\( \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{1 - 3\left| x \right|}} = - \dfrac{2}{3} \). \( \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{1 - 3\left| x \right|}} = \dfrac{1}{3} \).

Các câu hỏi liên quan