\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}}\)
A.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = \pm \infty \).
B.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = \pm 1\) .
C.\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = - \infty \).
D.\(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} \) không tồn tại.
\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{2{x^2} + 3x - 5}}{{\sqrt {{x^2} + 1} - 3x}} = +\infty \).