Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
\sqrt {0,01} + \sqrt {0,16} = \sqrt {\dfrac{1}{{100}}} + \sqrt {\dfrac{{16}}{{100}}} = \sqrt {{{\left( {\dfrac{1}{{10}}} \right)}^2}} + \sqrt {{{\left( {\dfrac{4}{{10}}} \right)}^2}} = \dfrac{1}{{10}} + \dfrac{4}{{10}} = \dfrac{5}{{10}} = \dfrac{1}{2}\\
b,\\
3,7 + 2.\sqrt {0,36} = 3,7 + 2.\sqrt {\dfrac{{36}}{{100}}} = 3,7 + 2.\sqrt {{{\left( {\dfrac{6}{{10}}} \right)}^2}} = 3,7 + 2.\dfrac{6}{{10}} = 3,7 + 2.0,6 = 3,7 + 1,2 = 4,9\\
c,\\
0,2.\sqrt {100} - \sqrt {0,25} = 0,2.\sqrt {{{10}^2}} - \sqrt {\dfrac{{25}}{{100}}} = 0,2.10 + \sqrt {{{\left( {\dfrac{5}{{10}}} \right)}^2}} = 2 + \dfrac{5}{{10}} = 2 + 0,5 = 2,5\\
d,\\
\left( {\sqrt {\dfrac{9}{{16}}} - \sqrt {\dfrac{1}{4}} } \right):2 = \left( {\sqrt {{{\left( {\dfrac{3}{4}} \right)}^2}} - \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2}} } \right):2 = \left( {\dfrac{3}{4} - \dfrac{1}{2}} \right):2 = \dfrac{1}{4}:2 = \dfrac{1}{8}
\end{array}\)