Đáp án:
$B. \dfrac{a^3\sqrt3}{24}$
$B. \dfrac{8a^3\sqrt3}{27}$
Giải thích các bước giải:
Câu 27:
Ta có:
$SA\perp (ABC) \,(gt)$
$\Rightarrow SA \perp BC$
mà $BC\perp AB$
$\Rightarrow BC\perp (SAB)$
$\Rightarrow BC\perp SB$
Ta lại có: $(SBC) \cap (ABC) = BC$
$SB\perp BC \, (cmt)$
$AB\perp BC$
$\Rightarrow\widehat{((SBC);(ABCD))} = \widehat{SBA} = 60^o$
$\Rightarrow SA = AB.\tan60^o = a\sqrt3$
$\Rightarrow V_{SABC} = \dfrac{1}{3}S_{ABC}.SA = \dfrac{1}{3}\cdot\dfrac{1}{2}AB.BC.SA = \dfrac{1}{6}a^2.a\sqrt3 = \dfrac{a^3\sqrt3}{6}$
Mặt khác:
$M,N$ là trung điểm $SC,AC$ $(gt)$
$\Rightarrow MN= \dfrac{1}{2}SA$ (tính chất đường trung bình)
$\Rightarrow S_{CMN} = \dfrac{1}{4}S_{SAC}$
$\Rightarrow V_{B.CMN} = \dfrac{1}{4}V_{B.SAC}$
$\Leftrightarrow V_{MNBC} = \dfrac{1}{4}.\dfrac{a^3\sqrt3}{6} = \dfrac{a^3\sqrt3}{24}$
Câu 28:
Ta có:
$SA\perp (ABCD) \, (gt)$
$\Rightarrow SA\perp CB$
mà $CB\perp AB$
$\Rightarrow CB\perp (SAB)$
$\Rightarrow BC\perp SB$
Ta lại có:
$(SBC) \cap (ABCD) = BC$
$SB\perp BC \,(gt)$
$AB\perp BC$
$\Rightarrow \widehat{((SBC);(ABCD))} = \widehat{SBA}= 60^o$
$\Rightarrow AB = \dfrac{SA}{\tan60^o} = \dfrac{2a}{\sqrt3}$
Mặt khác:
$SA\perp AB$
$AB\perp AD$
$\Rightarrow AB\perp (SAD)$
$\Rightarrow AB = d(B;(SAD))$
$\Rightarrow V_{S.ABD} = \dfrac{1}{3}S_{SAD}.d(B;(SAD)) = \dfrac{1}{3}\cdot\dfrac{1}{2}SA.AD.AB = \dfrac{1}{6}.2a.2a.\dfrac{2a}{\sqrt3} = \dfrac{4a^3}{3\sqrt3}$
Bên cạnh đó:
$BG= \dfrac{2}{3}BM$ ($M$ là trung điểm $SC$)
$\Rightarrow d(G;(SAD)) = \dfrac{2}{3}d(B;(SAD))$
$\Rightarrow V_{G.SAD} = \dfrac{2}{3}V_{B.SAD} = \dfrac{2}{3}\cdot \dfrac{4a^3}{3\sqrt3} = \dfrac{8a^3}{9\sqrt3} = \dfrac{8a^3\sqrt3}{27}$