$\\$
$\bullet$ Trường hợp : `a+b+c+d = 0`
`-> a+b=0 - (c+d), b+c = - (d+a), c+d=0 - (a+b), d+a=0 - (b+c)`
`-> a+b=- (c+d), b+c=-(d+a), c+d=- (a+b), d+a=- (b+c)`
`M = (a+b)/(c+d) + (b+c)/(d+a) + (c+d)/(a+b)+(d+a)/(b+c)`
`->M= (- (c+d) )/(c+d) + (- (d+a) )/(d+a) + ( -(a+b) )/(a+b) + (- (b+c) )/(b+c)`
`-> M = -1 + (-1)+(-1) + (-1)`
`-> M = -4`
Vậy `M=-4` khi `a+b+c+d=0`
$\\$
$\bullet$ Trường hợp : `a+b+c+d \ne 0`
Áp dụng tính chất dãy tỉ số bằng nhau có :
`(2019a +b+c+d)/a = (a+2019b +c+d)/b=(a+b+2019c+d)/c =(a+b+c+2019d)/d =(2019 a+b+c+d+a+2019b+c+d + a+b+2019c+d + a+b+c+2019d)/(a+b+c+d) = ( (2019a +a+a+a) + (b+2019b+b+b)+(c+c+2019c+c)+(d+d+d+2019d) )/(a+b+c+d) = (2022a + 2022b + 2022c + 2022d)/(a+b+c+d) = (2022 (a+b+c+d) )/(a+b+c+d) = 2022`
`-> (2019a +b+c+d)/a=2022 ->2019a +b+c+d=2022a ->b+c+d=3a ->a+b+c+d=4a`
và `(a+2019b +c+d)/b = 2022 -> a+2019b +c+d=2022b -> a+c+d=3b ->a+b+c+d=4b`
và `(a+b+2019c+d)/c=2022 ->a+ b+2019c +d=2022c -> a+b+d=3c ->a+b+c+d=4c`
và `(a+b+c+2019d)/d=2022 ->a+b+c+2019d=2022d ->a+b+c=3d ->a+b+c+d=4d`
Từ đó : `->4a=4b=4c=4d ->a=b=c=d`
`M = (a+b)/(c+d) + (b+c)/(d+a) + (c+d)/(a+b)+(d+a)/(b+c)`
`-> M = (a+a)/(a+a)+(b+b)/(b+b)+(c+c)/(c+d) + (d+d)/(d+d)`
`-> M = 1+1+1+1`
`-> M=4`
Vậy `M=4` khi `a+b+c+d \ne 0`