Đáp án:
$\begin{array}{l}
b)\dfrac{{3 + 2\sqrt 3 }}{{\sqrt 3 }} + \dfrac{{2 + \sqrt 2 }}{{1 + \sqrt 2 }} - \left( {2 + \sqrt 3 } \right)\\
= \dfrac{{\sqrt 3 \left( {\sqrt 3 + 2} \right)}}{{\sqrt 3 }} + \dfrac{{\sqrt 2 \left( {\sqrt 2 + 1} \right)}}{{1 + \sqrt 2 }} - 2 - \sqrt 3 \\
= \sqrt 3 + 2 + \sqrt 2 - 2 - \sqrt 3 \\
= \sqrt 2 \\
c)\sqrt {5 - 2\sqrt 6 } - \sqrt {{{\left( {\sqrt 2 - 5\sqrt 3 } \right)}^2}} \\
= \sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} - \left( {5\sqrt 3 - \sqrt 2 } \right)\\
= \sqrt 3 - \sqrt 2 - 5\sqrt 3 + \sqrt 2 \\
= - 4\sqrt 3 \\
d)\sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}} + \sqrt {4 - 2\sqrt 3 } \\
= \sqrt 3 - 1 + \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} \\
= \sqrt 3 - 1 + \sqrt 3 - 1\\
= 2\sqrt 3 - 2\\
e)\sqrt {15 - 6\sqrt 6 } + \sqrt {33 - 12\sqrt 6 } \\
= \sqrt {9 - 2.3.\sqrt 6 + 6} + \sqrt {24 - 2.2\sqrt 6 .3 + 9} \\
= \sqrt {{{\left( {3 - \sqrt 6 } \right)}^2}} + \sqrt {{{\left( {2\sqrt 6 - 3} \right)}^2}} \\
= 3 - \sqrt 6 + 2\sqrt 6 - 3\\
= \sqrt 6 \\
t)\dfrac{{\sqrt 2 }}{{1 + \sqrt 2 - \sqrt 3 }} - \dfrac{{\sqrt 6 }}{{\sqrt 2 + \sqrt 3 - \sqrt 5 }}\\
= \dfrac{{\sqrt 2 \left( {1 + \sqrt 2 + \sqrt 3 } \right)}}{{{{\left( {1 + \sqrt 2 } \right)}^2} - 3}} - \dfrac{{\sqrt 6 \left( {\sqrt 2 + \sqrt 3 + \sqrt 5 } \right)}}{{{{\left( {\sqrt 2 + \sqrt 3 } \right)}^2} - 5}}\\
= \dfrac{{\sqrt 2 \left( {1 + \sqrt 2 + \sqrt 3 } \right)}}{{3 + 2\sqrt 2 - 3}} - \dfrac{{\sqrt 6 \left( {\sqrt 2 + \sqrt 3 + \sqrt 5 } \right)}}{{5 + 2\sqrt 6 - 5}}\\
= \dfrac{{\sqrt 2 \left( {1 + \sqrt 2 + \sqrt 3 } \right)}}{{2\sqrt 2 }} - \dfrac{{\sqrt 6 \left( {\sqrt 2 + \sqrt 3 + \sqrt 5 } \right)}}{{2\sqrt 6 }}\\
= \dfrac{{1 + \sqrt 2 + \sqrt 3 }}{2} - \dfrac{{\sqrt 2 + \sqrt 3 + \sqrt 5 }}{2}\\
= - 2
\end{array}$