Đáp án:
`1)` ` A∩B={1};A∪B={1;2;3}`
`\qquad B\\ A={2;3}; A\\B=`∅
`2)` `A∩B=(1;3); A∪B=[-3;5); A\\B=[3;5)`
Giải thích các bước giải:
`1)` `A={n\in NN; n^2-2n+1=0}`
`\qquad n^2-2n+1=0`
`<=>(n-1)^2=0<=>n=1\in NN`
`=>A={1}`
$\\$
`\qquad B={n\in NN^{**}; n\le 3}`
`=>B={1;2;3}`
$\\$
`=>A∩B={1}`
`\qquad A∪B={1;2;3}`
`\qquad B\\ A={2;3}`
`\qquad A\\B=`∅
$\\$
`2)` `A=(1;5); B=[-3;3)`
`=>A∩B=(1;3)`
`\qquad A∪B=[-3;5)`
`\qquad A\\B=[3;5)`
______
Lý thuyết:
`A∩B={x\in A` và `x\in B}`
`A∪B={x\in A` hoặc `x\in B}`
`A\\B={x\in A` và `x∉B}`
`B\\A={x\in B` và `x∉A}`