Đáp án:
$\\$
`a,`
$\bullet$ `A (x) = P (x) + Q (x)`
`-> A (x) = (5x^3 - 4 4/5 x^2 + 2x-1) + (5x^3 - 4/5x^2 - 2x - 8)`
`-> A (x) = 5x^3 - 24/5 x^2 + 2x-1 + 5x^3 - 4/5x^2 - 2x - 8`
`-> A (x) = (5x^3 + 5x^3) + (-24/5x^2 -4/5x^2) + (2x-2x) + (-1-8)`
`-> A (x) = 10x^3 - 28/5 x^2 - 9`
$\bullet$ `B (x) = P (x) - Q (x)`
`-> B (x) = (5x^3 - 4 4/5 x^2 + 2x-1) - (5x^3 - 4/5x^2 - 2x - 8)`
`-> B (x) = 5x^3 - 24/5 x^2+2x-1 - 5x^3 + 4/5x^2 + 2x + 8`
`-> B(x) = (5x^3 - 5x^3) + (-24/5x^2 + 4/5x^2) + (2x+2x) + (-1 + 8)`
`-> B (x) = -4x^2 + 4x + 7`
$\\$
`b,`
$\bullet$ `A (x) = 10x^3 - 28/5 x^2 - 9`
`-> A (-1/2) = 10. (-1/2)^3 - 28/5 . (-1/2)^2 -9`
`->A (-1/2) = 10 . (-1)/8 - 28/5 . 1/4 - 9`
`-> A (-1/2) = (-5)/4 - 7/5 - 9`
`-> A (-1/2) = (-53)/20 - 9`
`-> A (-1/2) = (-233)/20`
Vậy `A (-1/2) = (-233)/20`
$\\$
`c,`
$\bullet$ `M (x) = A (x) - 10x^3 - 2/5x^2 + 18`
`-> M (x) = (10x^3 - 28/5 x^2 - 9) - 10x^3 - 2/5x^2 + 18`
`-> M (x) = 10x^3 - 28/5 x^2 - 9- 10x^3 - 2/5x^2 + 18`
`-> M (x) = (10x^3 - 10x^3) + (-28/5x^2 - 2/5x^2) + (-9+18)`
`-> M (x)=-6 x^2 + 9`
Cho `M (x) = 0`
`-> -6x^2 + 9=0`
`-> -6x^2=0-9`
`-> -6x^2=-9`
`-> x^2=-9÷ (-6)`
`-> x^2=3/2`
`↔` \(\left[ \begin{array}{l}x^2=(\sqrt{\dfrac{3}{2} })^2\\x^2=(\sqrt{ \dfrac{-2}{3} })^2\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x=\sqrt{ \dfrac{2}{3} }\\x=\sqrt{ \dfrac{-2}{3} }\end{array} \right.\)
Vậy `x=\sqrt{2/3},x=\sqrt{ (-2)/3}` là 2 nghiệm của `M (x)`
$\\$
`d,`
$\bullet$ `M (x) = -6x^2 + 9`
Vì $x^2 \geqslant 0∀x$
$↔ -6x^2 \leqslant 0 ∀x$
$↔ -6x^2 + 9 \leqslant 9 ∀x$
`↔ M (x)` $\leqslant 9$
`↔ max M (x) = 9`
Dấu "`=`" xảy ra khi :
`↔x^2=0`
`↔x=0`
Vậy `max M (x)=9↔x=0`