Ta có: $\dfrac{2x+1}{5}=$ $\dfrac{3y-2}{7}$
Theo tính chất dãy tỉ số bằng nhau
-> $\dfrac{2x+1}{5}+$ $\dfrac{3y-2}{7}=$ $\dfrac{2x+3y-1}{12}$
Mà $\dfrac{2x+1}{5}=$ $\dfrac{3y-2}{7}=$ $\dfrac{2x+3y-1}{6x}$
-> $\dfrac{2x+3y-1}{6x}=$ $\dfrac{2x+3y-1}{12}$
-> $6x^{}=12$
⇔ $x^{}=2$
-> $\dfrac{2x+1}{5}=$ $\dfrac{2.2+1}{5}=1$
mà $\dfrac{2x+1}{5}=$ $\dfrac{3y-2}{7}$
-> $\dfrac{3y-2}{7}=1$
⇔ $3y-2^{}=7$
⇔ $3y^{}=9$
⇔ $y^{}=3$
Vậy $x^{}=2,y=3$
Chúc bạn học tốt !!!!