Đáp án:
Giải thích các bước giải:
a) $\sqrt[]{2x-1}=\sqrt[]{x-1}$ ĐKXĐ: $\left \{ {{2x-1\geq0} \atop {x-1\geq0}} \right.$ $⇔\left \{ {{x\geq\frac{1}{2}} \atop {x\geq1}} \right.$$⇔x\geq1$
$⇔|2x-1|=|x-1|$
$⇔\left[ \begin{array}{l}2x-1=x-1\\2x-1=1-x\end{array} \right.$
$⇔\left[ \begin{array}{l}x=0(l)\\x=\frac{2}{3}(l)\end{array} \right.$
S= vô nghiệm
b) $\sqrt[]{x^{2}-x-6}=\sqrt[]{x-3}$ ĐKXĐ: $\left \{ {{x^{2}-x-6\geq0} \atop {x-3\geq0}} \right.⇔\left \{ {{(x-3)(x+2)\geq0} \atop {x-3\geq0}} \right.$ $⇔\left \{ {{\left[ \begin{array}{l}\left \{ {{x\geq3} \atop {x\geq-2}} ⇔x\geq3\right.\\\left \{ {{x\leq3} \atop {x\leq-2}}⇔x\leq-2 \right.\end{array} \right.} \atop {x\geq3}} \right.$$⇔x\geq3$
$⇔\sqrt[]{x^{2}-3x+2x-6}-\sqrt[]{x-3}=0$
$⇔\sqrt[]{x(x-3)+2(x-3)}-\sqrt[]{x-3}=0$
$⇔\sqrt[]{x-3}.\sqrt[]{x+2}-\sqrt[]{x-3}=0$
$⇔\sqrt[]{x-3}(\sqrt[]{x+2}+1)=0$
$⇔\left[ \begin{array}{l}x=3\\\sqrt[]{x+2}=-1(vn)\end{array} \right.$
S={$3$}
c) $\sqrt[]{x^{2}-x}=\sqrt[]{3x-5}$ ĐKXĐ: $\left \{ {{x^{2}-x\geq0} \atop {3x-5\geq0}} \right.⇔\left \{ {{x(x-1)\geq0} \atop {x\geq\frac{5}{3}}} \right.$ $⇔\left \{ {{\left[ \begin{array}{l}\left \{ {{x\geq0} \atop {x\geq1}} ⇔x\geq1\right.\\\left \{ {{x\leq0} \atop {x\leq1}}⇔x\leq0 \right.\end{array} \right.} \atop {x\geq\frac{5}{3}}} \right.$ $⇔x\geq\frac{5}{3}$
$⇔|x^{2}-x|=|3x-5|$
$⇔\left[ \begin{array}{l}x^{2}-x=3x-5\\x^{2}-x=5-3x\end{array} \right.$
$⇔\left[ \begin{array}{l}x^{2}-4x+5=0(vn)\\x^{2}+2x+5=0(vn)\end{array} \right.$
S= vô nghiệm
Xin hay nhất!!!