a)$\begin{array}{l} a)2\sqrt {27} - \sqrt {180} - 3\sqrt {75} + 4\sqrt {45} \\ = 2.\sqrt {{3^2}.3} - \sqrt {{6^2}.5} - 3\sqrt {{5^2}.3} + 4\sqrt {{3^2}.5} \\ = 6\sqrt 3 - 6.\sqrt 5 - 15\sqrt 3 + 12\sqrt 5 \\ = - 9\sqrt 3 + 6\sqrt 5 \end{array}$
b)
$\begin{array}{l} \dfrac{{\sqrt {15} - \sqrt {20} }}{{\sqrt 3 - 2}} + \dfrac{4}{{2 - \sqrt 5 }}\\ = \dfrac{{\left( {\sqrt {15} - \sqrt {20} } \right)\left( {\sqrt 3 + 2} \right)}}{{\left( {\sqrt 3 - 2} \right)\left( {\sqrt 3 + 2} \right)}} + \dfrac{{4\left( {2 + \sqrt 5 } \right)}}{{\left( {2 - \sqrt 5 } \right)\left( {2 + \sqrt 5 } \right)}}\\ = \dfrac{{\sqrt {45} + 2\sqrt {15} - \sqrt {60} - 2\sqrt {20} }}{{3 - 2}} - \dfrac{{8 + 4\sqrt 5 }}{{5 - 4}}\\ = 3\sqrt 5 + 2\sqrt {15} - 2\sqrt {15} - 4\sqrt 5 - 8 - 4\sqrt 5 \\ = - 8 - 3\sqrt 5 \end{array}$
c)
$\begin{array}{l} \sqrt {5 - \sqrt {21} } \left( {\sqrt 6 + \sqrt {14} } \right)\\ = \sqrt {10 - 2\sqrt {21} } \left( {\sqrt 3 + \sqrt 7 } \right)\\ = \sqrt {7 + 3 - 2\sqrt 7 .\sqrt 3 } \left( {\sqrt 3 + \sqrt 7 } \right)\\ = \sqrt {{{\left( {\sqrt 7 - \sqrt 3 } \right)}^2}} \left( {\sqrt 3 + \sqrt 7 } \right)\\ = \left( {\sqrt 7 - \sqrt 3 } \right)\left( {\sqrt 7 + \sqrt 3 } \right) = 7 - 3 = 4 \end{array}$
d)
$\begin{array}{l} \left( {\dfrac{{\sqrt x + 3}}{{x - 9}} - \dfrac{{\sqrt x + 3}}{{x + 6\sqrt x + 9}}} \right):\dfrac{2}{{x - 9}}\\ = \left[ {\dfrac{{\sqrt x + 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} - \dfrac{{\left( {\sqrt x + 3} \right)}}{{{{\left( {\sqrt x + 3} \right)}^2}}}} \right].\dfrac{{x - 9}}{2}\\ = \left( {\dfrac{1}{{\sqrt x - 3}} - \dfrac{1}{{\sqrt x + 3}}} \right).\dfrac{{x - 9}}{2}\\ = \dfrac{{\sqrt x + 3 - \sqrt x + 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}.\dfrac{{x - 9}}{2} = \dfrac{6}{{x - 9}}.\dfrac{{x - 9}}{2}\\ = 3 \end{array}$