Đáp án:
9 km/h
Giải thích các bước giải:
Gọi v, v' lần lượt là vận tốc cano và vận tốc dòng nước.
Quãng đường cano đi được trong 40 phút là:
\[{s_1} = \dfrac{2}{3}(v - v')\]
Quãng đường cano trôi trong thời gian sửa chữa là:
\[{s_1}' = \dfrac{1}{6}v'\]
Quãng đường bè trôi trong 50 phút là:
\[{s_2} = \dfrac{5}{6}v'\]
Thời gian để cano và bè gặp nhau là:
\[t = \dfrac{{{s_1} - {s_1}' + {s_2}}}{{v + v' - v'}} = \dfrac{{\dfrac{2}{3}v}}{v} = \dfrac{2}{3}h\]
Do cano và bè gặp nhau tại B cách A 6km nên:
\[6 = \dfrac{2}{3}v' \Rightarrow v' = 9km/h\]