+ Sử dụng biểu thức tính cơ năng: \({\rm{W}} = \frac{1}{2}k{{\rm{A}}^2}\) + Vận dụng biểu thức tính biên độ dao động tổng hợp: \({A^2} = A_1^2 + A_2^2 + 2{{\rm{A}}_1}{A_2}co{\rm{s}}\Delta \varphi \) Giải chi tiết:Ta có: \({\rm{W}} = \frac{1}{2}k{{\rm{A}}^2} = \frac{1}{2}m{\omega ^2}{A^2}\) \( \Rightarrow A = \sqrt {\frac{{2W}}{{m{\omega ^2}}}} = \sqrt {\frac{{2.0,05625}}{{0,{{2.15}^2}}}} = 0,05m = 5cm\) Độ lệch pha giữa 2 dao động: \(\Delta \varphi = \frac{\pi }{2}\) \( \Rightarrow \) Suy ra 2 dao động vuông pha với nhau.\( \Rightarrow {A^2} = A_1^2 + A_2^2 \Rightarrow {A_2} = \sqrt {{A^2} - A_1^2} = \sqrt {{5^2} - {3^2}} = 4cm\) Đáp án D.