1) xy(a2+2b2)−ab(2x2+y2)
=a2xy+2b2xy−2abx2−aby2
=(a2xy−aby2)+(2b2xy−2abx2)
=ay(ax−by)+2bx(by−ax)
=ay(ax−by)−2bx(ax−by)
=(ax−by)(ay−2bx)
2) Sửa đề (xy+ab)2+(bx−ay)2
=(xy)2+2xyab+(ab)2+(bx)2−2xyab+(ay)2
=x2y2+a2b2+b2x2+a2y2
=(x2y2+b2x2)+(a2b2+a2y2)
=x2(b2+y2)+a2(b2+y2)
=(b2+y2)(x2+a2)
3) (2xy+ab)2+(2ay−bx)2
=(2xy)2+2.2xyab+(ab)2+(2ay)2−2.2xyab+(bx)2
=4x2y2+4xyab+a2b2+4a2y2−4xyab+b2x2
=4x2y2+4a2y2+a2b2+b2x2
=4y2(x2+a2)+b2(a2+x2)
=(a2+x2)(4y2+b2)