A.\({a^2} + {b^2} - c > 0\)B.\({a^2} + {b^2} - c \ge 0\)C.\({a^2} + {b^2} - 4c > 0\)D.\({a^2} + {b^2} - 4c \ge 0\)
A.\(1\)B.\(2\)C.\(3\)D.\(4\)
A.\({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} = \sqrt {10} \)B.\({\left( {x + 2} \right)^2} + {\left( {y + 4} \right)^2} = 10\)C.\({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} = 10\)D.\({\left( {x + 2} \right)^2} + {\left( {y + 4} \right)^2} = 2\sqrt 5 \)
A.\(\left( C \right):\,\,{\left( {x + 6} \right)^2} + {\left( {y - 7} \right)^2} = 9\)B.\(\left( C \right):\,\,{\left( {x + 6} \right)^2} + {\left( {y - 7} \right)^2} = 81\)C.\(\left( C \right):\,\,{\left( {x + 6} \right)^2} + {\left( {y - 7} \right)^2} = 89\)D.\(\left( C \right):\,\,{\left( {x + 6} \right)^2} + {\left( {y - 7} \right)^2} = \sqrt {89} \)
A.\(\left( C \right)\) có tâm \(I\left( { - 1;\,\, - 2} \right)\)B.\(\left( C \right)\) có bán kính \(R = 5\)C.\(\left( C \right)\) đi qua điểm \(M\left( {2;\,\,2} \right)\)D.\(\left( C \right)\) đi qua \(A\left( {1;\,\,1} \right)\)
A.\({x^2} + {y^2} + 2x - 6y - 22 = 0\)B.\({x^2} + {y^2} - 2x - 6y - 22 = 0\)C.\({x^2} + {y^2} - 2x - 6y + 22 = 0\)D.\({x^2} + {y^2} - 2x + 6y + 22 = 0\)
A.\(0\)B.\(1\)C.\(2\)D.\(3\)
A.\(I\left( { - 2;\,\,3} \right),\,\,R = 4\)B.\(I\left( { - 2;\,\,3} \right),\,\,R = 16\)C.\(I\left( {2;\,\, - 3} \right),\,\,R = 16\)D.\(I\left( {2;\,\, - 3} \right),\,\,R = 4\)
A.\({\left( {x - 1} \right)^2} = 3\)B.\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 3\)C.\({\left( {x - 1} \right)^2} - {\left( {y - 1} \right)^2} = 3\)D.\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = - 3\)
A.\(3721\,\,c{m^2}.\)B.\(2562\,\,c{m^2}.\)C.\(2352\,\,c{m^2}.\)D.\(2682\,\,c{m^2}.\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến