Đáp án: $\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}=0$
Giải thích các bước giải:
$\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}$
$=\sqrt{2^3.\sqrt{3}}-2\sqrt{5^2.\sqrt{2^2.3}}+4\sqrt{\sqrt{2^6.3}}$
$=2\sqrt{2\sqrt{3}}-2.5\sqrt{2\sqrt{3}}+4\sqrt{2^3\sqrt{3}}$
$=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+4.2\sqrt{2\sqrt{3}}$
$=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}$
$=(2-10+8)\sqrt{2\sqrt{3}}$
$=0.\sqrt{2\sqrt{3}}$
$=0$