Rút gọn căn(3-căn2)-căn(3+căn2)
Rut gon :3−2−3+2\sqrt{3-\sqrt{2}}-\sqrt{3+\sqrt{2}}3−2−3+2
3−2−3+2\sqrt{3-\sqrt{2}}-\sqrt{3+\sqrt{2}}3−2−3+2
=(2−1)2−(2+1)2=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}=(2−1)2−(2+1)2
=2−1−2−1=\sqrt{2}-1-\sqrt{2}-1=2−1−2−1
=−2=-2=−2
Rút gọn M=n^3+2n^2-1/n^3+2n^2+2n+1
Rut gon : M=n3+2n2−1n3+2n2+2n+1M=\dfrac{n^3+2n^2-1}{n^3+2n^2+2n+1}M=n3+2n2+2n+1n3+2n2−1
Rút gọn A=căn((1+a^2)(1+b^2)(1+c^2))
cho a, b, c thoa man ab+bc+ca =1
rut gon ve dang ko chua can cua A= (1+a2)(1+b2)(1+c2)\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}(1+a2)(1+b2)(1+c2)
please
Rút gọn A=căn(4-căn7)-căn(4+căn7)+căn7
giai giups nhanh nha,RUT GON
A=4−7−4+7+7\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}4−7−4+7+7
B=6.5+12+6.5−12+26\sqrt{6.5+\sqrt{12}}+\sqrt{6.5-\sqrt{12}}+2\sqrt{6}6.5+12+6.5−12+26
C=46+65−29−125\sqrt{46+\sqrt{6\sqrt{5}}}-\sqrt{29-12\sqrt{5}}46+65−29−125
D=13−160−53+490\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}13−160−53+490
Rút gọn A=căn(9a^2-12a+4)-9a+1
cho minh hoi(rut gon)
A=9a2−12a+4−9a+1\sqrt{9a^2-12a+4}-9a+19a2−12a+4−9a+1
Rút gọn B=cănx/cănx +4 + 4/cănx - 4): x+16/cănx +2
Cho cac bieu thuc :
A=x+4x+2,B=(xx+4+4x−4):x+16x+2A=\dfrac{\sqrt{x}+4}{\sqrt{x}+2},B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}A=x+2x+4,B=(x+4x+x−44):x+2x+16
a) Rut gon B ?
b) Tim cac gia tri nguyen cua x de cac gia tri cua bieu thuc B(A-1) la so nguyen.
Rút gọn biểu thức 3căn8- 4 căn18 +5 căn32 - căn 50
rút gọn biểu thức
a) 38−418+532−503\sqrt{8}-4\sqrt{18}+5\sqrt{32}-\sqrt{50}38−418+532−50
b) (1550+5200−345015\sqrt{50}+5\sqrt{200}-3\sqrt{450}1550+5200−3450) : 10
c) 228+263−3175+1122\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}228+263−3175+112
d) (14−32\sqrt{14}-3\sqrt{2}14−32)2^22 +6286\sqrt{28}628
e) (1−2018)2\sqrt{\left(1-\sqrt{2018}\right)^2}(1−2018)2. 2019+22018\sqrt{2019+2\sqrt{2018}}2019+22018
f) (6−5)2−120\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{120}(6−5)2−120
g)12(23−32)2+26+3412\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{4}12(23−32)2+26+34
Tính T=x căn(1+y^2)+ y căn(1+x^2)
Cho x×y+(1+x2)(1+y2)=2018x\times y+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2018x×y+(1+x2)(1+y2)=2018 . Tính T=x1+y2+y1+x2T=x\sqrt{1+y^2}+y\sqrt{1+x^2}T=x1+y2+y1+x2 .
Tính 5+7 căn5/căn5 + 11 +căn11/1+căn11
5+755+11+111+11\dfrac{5+7\sqrt{5}}{\sqrt{5}}+\dfrac{11+\sqrt{11}}{1+\sqrt{11}}55+75+1+1111+11
Rút gọn căn12 - căn 27 + căn48/1- căn5 +căn(9-4 căn5)
a) Rút gọn 12−27+481−5+9−45\dfrac{\sqrt{12}-\sqrt{27}+\sqrt{48}}{1-\sqrt{5}+\sqrt{9-4\sqrt{5}}}1−5+9−4512−27+48
b) Giải hệ phương trình {x6−y6=1∣x+y∣+∣x−y∣=2\left\{{}\begin{matrix}x^6-y^6=1\\\left|x+y\right|+\left|x-y\right|=2\end{matrix}\right.{x6−y6=1∣x+y∣+∣x−y∣=2
giải hệ pt bằng pp cộng giúp mk vs
x√2-3y=1 b) 5x√3+y=2√2
2x+y√2=-2 x√6-y√2=2