Đáp án:
$\begin{array}{l}
G = \dfrac{{\sqrt {9 - 4\sqrt 5 } }}{{2 - \sqrt 5 }} = \dfrac{{\sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} }}{{2 - \sqrt 5 }}\\
= \dfrac{{\sqrt 5 - 2}}{{2 - \sqrt 5 }} = - 1\\
T = \sqrt {{{\left( {3 - \sqrt 3 } \right)}^2}} + \sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}} \\
= 3 - \sqrt 3 + \sqrt 3 - 1\\
= 2\\
R = \sqrt {7 - 4\sqrt 3 } + \sqrt {7 + 4\sqrt 3 } \\
= \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} + \sqrt {{{\left( {2 + \sqrt 3 } \right)}^2}} \\
= 2 - \sqrt 3 + 2 + \sqrt 3 \\
= 4\\
N = \sqrt {5 - 2\sqrt {7 - 2\sqrt 6 } } \\
= \sqrt {5 - 2\sqrt {{{\left( {\sqrt 6 - 1} \right)}^2}} } \\
= \sqrt {5 - 2\left( {\sqrt 6 - 1} \right)} \\
= \sqrt {7 - 2\sqrt 6 } \\
= \sqrt {{{\left( {\sqrt 6 - 1} \right)}^2}} \\
= \sqrt 6 - 1\\
S = \sqrt 3 + \sqrt {12} + 3\sqrt 2 .\sqrt {24} \\
= \sqrt 3 + 2\sqrt 3 + 3\sqrt 2 .2\sqrt 6 \\
= 3\sqrt 3 + 6.2.\sqrt 3 \\
= 15\sqrt 3 \\
E = \sqrt {4 - \sqrt 7 } .\sqrt {4 + \sqrt 7 } \\
= \sqrt {\left( {4 - \sqrt 7 } \right)\left( {4 + \sqrt 7 } \right)} \\
= \sqrt {8 - 7} \\
= 1
\end{array}$