Rút gọn \(P.\) A.\(P = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}\) B.\(P = \frac{{\sqrt x - 1}}{{\sqrt x - 2}}\) C.\(P = \frac{{\sqrt x + 1}}{{\sqrt x + 2}}\) D.\(P = \frac{{\sqrt x + 1}}{{\sqrt x - 2}}\)
Đáp án đúng: A Giải chi tiết:Điều kện: \(x \ge 0,\,\,x \ne 1,\,\,x \ne 4.\) \(\begin{array}{l}P = \left( {\sqrt x - \frac{{x + 2}}{{\sqrt x + 1}}} \right):\left( {\frac{{\sqrt x }}{{\sqrt x + 1}} + \frac{{\sqrt x - 4}}{{x - 1}}} \right)\\\,\,\,\, = \left( {\frac{{\sqrt x \left( {\sqrt x + 1} \right) - \left( {x + 2} \right)}}{{\sqrt x + 1}}} \right):\left( {\frac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} + \frac{{\sqrt x - 4}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}} \right)\\\,\,\,\, = \frac{{x + \sqrt x - x - 2}}{{\sqrt x + 1}}:\frac{{x - \sqrt x + \sqrt x - 4}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\\\,\,\, = \frac{{\sqrt x - 2}}{{\sqrt x + 1}}:\frac{{x - 4}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\\\,\, = \frac{{\sqrt x - 2}}{{\sqrt x + 1}}.\frac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}.\end{array}\) Chọn A.