Phương pháp giải: Đặt \(t = {x^2} \ge 0\), nhận xét số nghiệm của phương trình ẩn \(t\) và suy ta số nghiệm phương trình ẩn \(x\). Giải chi tiết:Đặt \(t = {x^2} \ge 0\) ta được \(\left( {2 - \sqrt 5 } \right){t^2} + 5{t^2} + 7\left( {1 + \sqrt 2 } \right) = 0\) (1) PT có \(ac = 7\left( {2 - \sqrt 5 } \right)\left( {1 + \sqrt 2 } \right) < 0\) nên (1) có hai nghiệm \(t\) trái dấu. Do đó phương trình đã cho chỉ có \(2\) nghiệm. Chọn B.