a) 2011.2013+2012.2014
=(2012−1)(2012+1)+(2013−1)(2013+1)
=20122−1+20132−1
=20122+20132−2
⇒2011.2013+2012.2014=20122+20132−2
b) (9−1)(92+1)(94+1)(98+1)(916+1)(932+1)
=101(9+1)(9−1)(92+1)(94+1)(98+1)(916+1)(932+1)
=101(92−1)(92+1)(94+1)(98+1)(916+1)(932+1)
=101(94−1)(94+1)(98+1)(916+1)(932+1)
=101(98−1)(98+1)(916+1)(932+1)
=101(916−1)(916+1)(932+1)
=101(932−1)(932+1)
=101(964−1)
=10964−1
Ta có: 964−1=1010(964−1)
Mà 1010(964−1)>10964−1
⇒(9−1)(92+1)(94+1)(98+1)(916+1)(932+1)<964−1
c) Ta có:
x2+xy+y2x2−y2=(x+y)2−xy(x−y)(x+y)(1)
Vì x>y>0, ta có:
x+yx−y=(x+y)2(x−y)(x+y)(2)
Vì x>y>0 nên (x+y)2−xy<(x+y)2(3)
Từ (1), (2) và (3) suy ra:
x+yx−y<x2+xy+y2x2−y2