Áp dụng định lý Py-Ta-Go vào $ΔABC$,ta có:
$BC^2=AB^2+AC^2$
⇔$BC^2=20^2+21^2$
⇔$BC^2=400+441$
⇔$BC^2=841$
⇔$BC=\sqrt[]{841}$
⇔$BC=29$
Ta có:
$sinB = \frac{AC}{BC} = \frac{21}{29} = cosC$
$cosB = \frac{AB}{BC} = \frac{20}{29} = sinC$
$tanB = \frac{AC}{AB} = \frac{21}{20} = cotC$
$cotB = \frac{AB}{AC} = \frac{20}{21} = tanC$