Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ne \pm 8;x \ne 0\\
\left[ {\frac{x}{{\left( {x - 8} \right)\left( {x + 8} \right)}} - \frac{{x - 8}}{{x\left( {x + 8} \right)}}} \right]:\left[ {\frac{{2x - 6}}{{x\left( {x + 8} \right)}} + \frac{x}{{8 - x}}} \right]\\
= \left[ {\frac{{{x^2} - {x^2} + 16x - 64}}{{x.\left( {x - 8} \right)\left( {x + 8} \right)}}} \right]:\left[ {\frac{{2{x^2} - 22x + 48 - {x^2}\left( {x + 8} \right)}}{{x\left( {x - 8} \right)\left( {x + 8} \right)}}} \right]\\
= \frac{{16\left( {x - 4} \right)}}{{x.\left( {x - 8} \right)\left( {x + 8} \right)}}.\frac{{x.\left( {x - 8} \right)\left( {x + 8} \right)}}{{ - {x^3} - 6{x^2} - 22x + 48}}\\
= - \frac{{16x - 64}}{{{x^3} + 6{x^2} + 22x - 48}}
\end{array}\)