Phương pháp giải: Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \(M\left( {{x_0};\;{y_0}} \right)\) thuộc đồ thị hàm số là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}.\) Giải chi tiết:Ta có: \(y = {x^3} \Rightarrow y' = 3{x^2}\) Đồ thị hàm số đi qua điểm có hoành độ là \(0 \Rightarrow \) đồ thị hàm số đi qua \(O\left( {0;\,\,0} \right).\) Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3}\) tại \(O\left( {0;\,\,0} \right)\) là: \(y = y'\left( 0 \right)\left( {x - 0} \right) + 0 = 0.\) Chọn C.