Giải:
\(\left(x+5\right)^2-\left(3x-7\right)^2=0\)
\(\Leftrightarrow\left[\left(x-5\right)+\left(3x-7\right)\right]\left[\left(x-5\right)-\left(3x-7\right)\right]=0\)
\(\Leftrightarrow\left(x-5+3x-7\right)\left(x-5-3x+7\right)=0\)
\(\Leftrightarrow\left(4x-12\right)\left(2-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-12=0\\2-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=12\\2x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=1\).
Chúc bạn học tốt!