a) x3−7x+6=0
⇒x3−2x2+2x2−4x−3x+6=0
⇒x2(x−2)+2x(x−2)−3(x−2)=0
⇒(x−2)(x2+2x−3)=0
⇒(x−2)(x2+3x−x−3)=0
⇒(x−2)[x(x+3)−(x+3)]=0
⇒(x−2)(x+3)(x−1)=0
⇒⎣⎡x−2=0x+3=0x−1=0
⇒⎣⎡x=2x=−3x=1
b) 2(x−3)−x2+3x=0
⇒2(x−3)−x(x−3)=0
⇒(x−3)(2−x)=0
⇒[x−3=02−x=0
⇒[x=3x=2