a) $∣5x-4∣=∣x+2∣$
$⇒\left[ \begin{array}{l}5x-4=x+2\\5x-4=-x-2\end{array} \right.$
$⇒\left[ \begin{array}{l}4x=6\\6x=2\end{array} \right.$
$⇒\left[ \begin{array}{l}x=\frac{3}{2}\\x=\frac{1}{3}\end{array} \right.$
Vậy $x=\frac{3}{2},x=\frac{1}{3}$
b) $∣2x-3∣-∣3x+2∣=0$
$⇒∣2x-3∣=∣3x+2∣$
$⇒\left[ \begin{array}{l}2x-3=3x+2\\2x-3=-3x-2\end{array} \right.$
$⇒\left[ \begin{array}{l}x=-5\\5x=1\end{array} \right.$
$⇒\left[ \begin{array}{l}x=-5\\x=\frac{1}{5}\end{array} \right.$
Vậy $x=-5;x=\frac{1}{5}$.