Đáp án:
3 số chẵn liên tiếp đó là $12 ; 14 ; 16$
Giải thích các bước giải:
Gọi 3 số chẵn liên tiếp đó là $2k - 2 , 2k , 2k + 2 ( k ∈ N ; k > 1 )$
Tích của 2 số chẵn liến tiếp đầu là $2k×( 2k - 2 )$
Tích của 2 số chẵn liên tiếp sau là $2k×( 2k + 2 )$
Theo bài ta có :
$2k×( 2k - 2 ) + 56 = 2k×( 2k + 2 )$
⇔ $4k^{2} - 4k + 56 = 4k^{2} + 4k$
⇔ $8k = 56$
⇔ $k = 7$
⇒ 3 số chẵn liên tiếp đó là $12 ; 14 ; 16$