a) \(x^3-0,25x=0\)
\(\Leftrightarrow x\left(x^2-0,25\right)=0\)
\(\Leftrightarrow x\left(x-0,5\right)\left(x+0,5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-0,5=0\\x+0,5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\)
Vậy \(x_1=0;x_2=0,5;x_3=-0,5\).
b) \(4x^2-9=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x_1=\dfrac{3}{2};x_2=-\dfrac{3}{2}\).
c) \(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy x = 5.