Đáp án + Giải thích các bước giải:
`a//|-3+x|=|2x-1|`
`=>` \(\left[ \begin{array}{l}-3+x=2x-1\\-3+x=-2x+1\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x-2x=3-1\\x+2x=3+1\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}-x=2\\3x=4\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=-2\\x=\frac{4}{3}\end{array} \right.\)
Vậy `x∈{-2;(4)/(3)}`
`b//(x-5)^{2}=(2x-1)^{2}`
`⇒` \(\left[ \begin{array}{l}x-5=2x-1\\x-5=-2x+1\end{array} \right.\)
`⇒` \(\left[ \begin{array}{l}x-2x=5-1\\x+2x=5+1\end{array} \right.\)
`⇒` \(\left[ \begin{array}{l}-x=4\\3x=6\end{array} \right.\)
`⇒` \(\left[ \begin{array}{l}x=-4\\x=2\end{array} \right.\)
Vậy `x∈{-4;2}`