Đáp án:
Giải thích các bước giải:
`A=(x^3+2012)/x` `ĐK: x>0`
`->A=x^3/x+2012/x`
`->A=x^2+1006/x+1006/x`
Áp dụng BĐT Côsi cho 3 số không âm `x^2;1006/x;1006/x` , ta được :
`x^2+1006/x+1006/x>=` $3.\sqrt[3]{x^2. \dfrac{1006}{x} . \dfrac{1006}{x}}$
`->A>=` $3.\sqrt[3]{1006^2}$
Dấu `=` xảy ra
`<=>x^2=1006/x`
`<=>x=10`
Vậy giá trị lớn nhất của biểu thức là $3.\sqrt[3]{1006^2}$ khi `x=10`