`\sqrt{25x^2-20x+2) + \sqrt{25x^2-30x+9}`
Đặt `A = \sqrt{25x^2 - 20x+2} + \sqrt{25x^2-30x+9}`
Ta có :
`25x^2 - 20x + 4 = (5x)^2 - 2 . 5x . 2 + 2^2 = (5x-2)^2 \ge 0`
`\to \sqrt{25x^2-20x+4} \ge 0`
`25x^2 - 30x + 9 = (5x)^2 - 2 . 5x . 3 + 3^2 = (5x-3)^2 \ge 0`
`\to \sqrt{25x^2-30x+9} \ge 0`
Vậy `A = \sqrt{25x^2-20x+2} + \sqrt{25x^2-30x+9} \ge 0`
Vậy min `A \ge 0 ⇔ (5x-2)(3x-5) \ge 0`
`⇔ 2/5 \le x \le 3/5`