`6)(2x+3)²-(5x-4)(5x+4)=(x+5)²-(3x-1)(7x+2)-(x²-x+1)`
`⇔4x²+12x+9-(25x²-16)=x²+10x+25-(21x²+6x-7x-2)-x²+x-1`
`⇔4x²+12x+9-25x²+16=x²+10x+25-21x²-6x+7x+2-x²+x-1`
`⇔(4x²-25x²)+12x+(9+16)=(x²-21x²-x²)+(10x-6x+7x+x)+(25+2-1)`
`⇔-21x²+12x+25=-21x²+12x+26`
`⇔-21x²+12x+21x²-12x=26-25`
`⇔0x=1(vô lý)`
Vậy không có giá trị nào thỏa mãn `x`
$\\$
`7)` Sửa đề:`(1-3x²)-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)²`
`→(1-3x)²-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)²`
`(1-3x)²-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)²`
`⇔1-6x+9x²-(9x²+x-18x-2)=9x²-16-9(x²+6x+9)`
`⇔1-6x+9x²-9x²-x+18x+2=9x²-16-9x²-54x-81`
`⇔(9x²-9x²)+(-6x-x+18x)+(1+2)=(9x²-9x²)-54x-(16+81)`
`⇔11x+3=-54x-97`
`⇔11x+54x=-97-3`
`⇔65x=-100`
`⇔x=-20/13`
Vậy `x=-20/13`
$\\$
`8)(3x+4)(3x-4)-(2x+5)²=(x-5)²+(2x+1)²-(x²-2x)+(x-1)²`
`⇔9x²-16-(4x²+20x+25)=x²-10x+25+4x²+4x+1-x²+2x+x²-2x+1`
`⇔9x²-16-4x²-20x-25=(x²+4x²-x²+x²)+(-10x+4x+2x-2x)+(25+1+1)`
`⇔(9x²-4x²)-20x-(16+25)=5x²-6x+27`
`⇔5x²-20x-41=5x²-6x+27`
`⇔5x²-20x-5x²+6x=27+41`
`⇔-14x=68`
`⇔x=-68/14`
`⇔x=-34/7`
Vậy `x=-34/7`
$\\$
`9)(x-7)(x+1)-(x-3)²=(3x-5)(3x+5)-(3x+1)²+(x-2)²-x²`
`⇔x²+x-7x-7-(x²-6x+9)=9x²-25-(9x²+6x+1)+x²-4x+4-x²`
`⇔x²+x-7x-7-x²+6x-9=9x²-25-9x²-6x-1+x²-4x+4-x²`
`⇔(x²-x²)+(x-7x+6x)+(-7-9)=(9x²-9x²+x²-x²)+(-6x-4x)+(-25-1+4)`
`⇔-16=-10x-22`
`⇔10x=-22+16`
`⇔10x=-6`
`⇔x=-6/10`
`⇔x=-3/5`
Vậy `x=-3/5`
$\\$
`10)-5(x+3)²+(x-1)(x+1)+(2x-3)²=(5x-2)²-5x(5x+3)`
`⇔-5(x²+6x+9)+x²-1+4x²-12x+9=25x²-20x+4-25x²-15x`
`⇔-5x²-30x-45+x²-1+4x²-12x+9=(25x²-25x²)-(20x+15x)+4`
`⇔(-5x²+x²+4x²)-(30x+12x)-(45+1-9)=-35x+4`
`⇔-42x-37=-35x+4`
`⇔-42x+35x=4+37`
`⇔-7x=41`
`⇔x=-41/7`
Vậy `x=-41/7`