A= xy(x-2)(y+6)+12x ²-24x+3y ²+18y+2045
= xy(x-2)(y+6)+ 12(x²-2x)+ 3y(y+6)+ 2045
= y(x²-2x)(y+6)+ 12(x²-2x)+ 3y(y+6)+ 2045
= y(y+6)(x²- 2x+3)+ 12(x²-2x+3)+ 2009
= (x²-2x+3)(y²+ 6y+12)+ 2009
= [(x-1)²+2][(y+3)²+ 3]+ 2009
vì (x-1)²+2 ≥ 2 với mọi x
(y+3)²+ 3 ≥ 3 với mọi y
=> [(x-1)²+2][(y+3)²+ 3]+ 2009 ≥ 2.3+ 2009= 2015
Dấu "=" xảy ra <=> x=1; y=-3
Vậy min A= 2015 <=> x=1; y=-3