Đáp án đúng: B Giải chi tiết:\({{\left( 3{{x}^{3}}-\frac{2}{{{x}^{2}}} \right)}^{5}}=\sum\limits_{i=0}^{5}{C_{5}^{i}{{\left( 3{{x}^{3}} \right)}^{i}}{{\left( -2{{x}^{-2}} \right)}^{5-i}}}=\sum\limits_{i=0}^{5}{C_{5}^{i}{{.3}^{i}}.{{(-2)}^{5-i}}.{{x}^{3i-10+2i}}}=\sum\limits_{i=0}^{5}{C_{5}^{i}{{.3}^{i}}.{{(-2)}^{5-i}}.{{x}^{5i-10}}}\) Ta có: \(5i-10=10\Leftrightarrow i=4\) Hệ số của \({{x}^{10}}\)trong khai triển biểu thức \({{\left( 3{{x}^{3}}-\frac{2}{{{x}^{2}}} \right)}^{5}}\) là: \(C_{5}^{4}{{.3}^{4}}.{{(-2)}^{5-4}}=-810\) Chọn: B.