Đáp án:
-263
Giải thích các bước giải:
\(
\begin{array}{l}
A = (x^2 - 1)(x + 2x^2 )^{12} = (x^2 - 1)\sum\limits_{k = 0}^{12} {C_{12}^k .x^{12 - k} .2^k .x^{2k} } \\
= (x^2 - 1)\sum\limits_{k = 0}^{12} {C_{12}^k .2^k .x^{12 + k} = \sum\limits_{k = 0}^{12} {C_{12}^k .2^k .x^{14 + k} - \sum\limits_{k = 0}^{12} {C_{12}^k .2^k .x^{12 + k} } } } \\
= > a_{14} = C_{12}^0 .2^0 - C_{12}^2 .2^2 = - 263 \\
\end{array}
\)